Intelligent Video Surveillance Systems

Free download. Book file PDF easily for everyone and every device. You can download and read online Intelligent Video Surveillance Systems file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with Intelligent Video Surveillance Systems book. Happy reading Intelligent Video Surveillance Systems Bookeveryone. Download file Free Book PDF Intelligent Video Surveillance Systems at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF Intelligent Video Surveillance Systems Pocket Guide.

The solution offers centralized management of all devices, servers and users, and empowers an extremely flexible rule engine driven by schedules and events and includes more than features and functions. Deploy and operate an access control and lock system that uses a single access medium, making transponders and keys things of the past. Video surveillance systems, the company adapted and added innovative new approaches to what had already been very high security standards. Along with the security equipment, the security control center on the Vodafone campus is among the most advanced systems of its type anywhere in Europe.

Desigo Mass Notification is able to use a number of different communication channels.

Intelligent IP video management platform tailored to your specific needs

A Total Building Solution extension has been launched, including video surveillance and building automation disciplines. Our experts will be pleased to assist you and will answer your questions. This page requires JavaScript in order to be fully functional and displayed correctly.

Please enable JavaScript and reload the site. It looks like you are using a browser that is not fully supported. Please note that there might be constraints on site display and usability. For the best experience we suggest that you download the newest version of a supported browser:. Access Control Security management.

Video Surveillance. Read the brochure on the details of our video management solution Download the brochure. Product information Intelligent IP video management platform tailored to your specific needs Siveillance VMS is a powerful IP video management software VMS designed for deployments ranging from small and simple to large-scale and high-security. Siveillance VMS 50 The Siveillance VMS 50 system is designed for small-sized installations with the full functionality of advanced management, flexible scheduling, fast searching and analysis.

Siveillance VMS The Siveillance VMS system is designed for small-sized installations that need robust multi-server surveillance software with the full functionality of advanced management, flexible scheduling, fast searching and analysis. References Security solutions in action Our experience makes the difference — and it continues to grow. Security can take many different forms.

Huang and Yen [ 28 ] designed a real-time and colour-based computer vision system for traffic monitoring, by analysing colour image sequences of traffic scenes recorded by mounting a stationary camera on a tall building or a pedestrian crossing bridge near a traffic light.

Although computer vision-based surveillance systems have various functionalities, such as vehicle detection, recognition and classification, the systems require relatively long processing times and considerable memory, since converting collected data into useful information can be challenging.

In addition, the set-up for camera calibration to facilitate the extraction of the required images is difficult and time-consuming [ 29 ]. However, according to Zander et al. Thus, systems are able to learn without being explicitly programmed, by exploring the construction of algorithms. This facilitates more efficient calculation and measurement of real-time information on roadside activities, occupancy, vacancy and traffic parameters. In summary, an effective roadside surveillance system is critical for maintaining road safety, alleviating traffic congestion and facilitating traffic and fleet management.

Applications for the measurement of traffic parameters and car park management utilizing computer vision, show an increasing trend. Computer vision technology can be powerful when properly matched with machine learning and big data analysis, outweighing the disadvantage of long processing times. In addition, this can lead to better analysis, with a high level of accuracy and efficiency [ 31 ]. Furthermore, improvements in camera calibration should be considered when utilizing computer vision, to maintain the accuracy, efficiency and effectiveness of the systems and to account for various features on different roads, such as the surroundings and the amount of sunlight.

It aims at reducing issues of double-parking in urban transport systems and improving the visibility of roadside situations. The transparency of roadside occupancy and vacancy can be further enhanced. To collect data effectively and efficiently, an IoT-based roadside surveillance system CVROSS has been designed and developed to tackle the problem of loading and unloading bays. As shown in Figure 2 , the CVROSS was equipped with a set of solar power-enabled wireless HD vision devices, which enable the system to capture images from the roadside.

To reduce electrical costs and avoid the risks of relying heavily on external power or solar energy, the devices connect wirelessly to a cloud platform, allowing continuous data transfer to the CVROSS and real-time monitoring of occupancy and vacancy data, retaining up-to-date roadside information for 24 h a day, seven days a week. By using application program interfaces APIs , the collected data can be examined at the preprocessing stage by the proposed decision support model; thus, the roadside traffic information can be observed in real time.

Via a vision module and machine learning, users are provided with hundreds of functions for acquiring images from a multitude of vision devices, for further processing by locating features, identifying objects and measuring parts. In addition, machines can learn from empirical data, making predictions about future data. HD vision devices are expected to be used, to provide the best compromise between maximum observation accuracy and minimum overlapping field of view, to generate the best viewpoint.

Image data are then processed by denoising and image tuning, leading to target object detection, recognition, identification, classification and calculation of available parking spaces. As a result, useful and easily accessible traffic information on real-time roadside occupancy and vacancy can be provided to road users. Furthermore, with the aid of machine learning techniques applied in a time-domain dynamic system, both the accuracy and the efficiency of the system are enhanced. Various reports can be generated for road users, logistics companies and the public, for decision-making via big data analysis.

Data analytics and computation modules function as the back-end cloud server, and the results are retrieved and displayed in front-end applications for end users. The process flow of the proposed system is illustrated in Figure 3. Transparency of roadside activities and information can be enhanced and reports can be produced at the end of every timed loop, after image processing. Before running the CVROSS, parameters must be set up, including types of vehicles, vehicle parking space regulations and minimum width of traffic lanes. Therefore, the system can compare the captured images with templates in the database, in order to process images and data more accurately in the later stages.

To facilitate the calculation of parking gaps and available parking spaces, differences in the dimensions of all items caused by non-identical distances from the vision device are ignored in the computation process. In other words, it is assumed that each of the items presented in a case has the same dimensions in millimetres or pixels, regardless of its position in terms of distance in relation to the vision device. In the computation process, the preliminary parameters include:.

Afterwards, the collected data are used in: i noise reduction and ii vehicle and object recognition and matching. One of the most important stages in the entire system flow is noise reduction. This is a process of removing noise from an image, as the noise might degrade both the visual quality and the effectiveness of subsequent processing tasks [ 33 ].

In this case according to the simulation model , on the roadside and in traffic lanes, there are different objects and signals, such as traffic indicators and instructions in traffic lanes. However, these are likely to be unrelated to vehicle and object recognition and matching, therefore they may negatively affect matching results and the effectiveness of the subsequent calculation of available parking spaces.

Furthermore, even similar vehicles, such as two private cars in this case, may be the same model but different in colour. Therefore, noise reduction can ensure that unrelated objects, indicators and signals are removed before further processing of the images. This also prevents problems with colour classification. In Figure 4 , an example of noise reduction is illustrated.

Before noise reduction, the image obtained from vision acquisition was full of obstacles, such as a road sign, a traffic cone and yellow box markings. All these were a hindrance to vehicle and object recognition and matching. After noise reduction, the indicator, traffic cone and yellow box markings had been removed blacked out and only the private car remained on the screen with its shape shown in white.

If all the items that need to be detected and matched share the same features, pattern matching is the best method, as it will compare all the features and colours of an item from the template and the captured image. However, not all vehicles and objects are the same. For example, some owners may paint the roof or body of a vehicle. Therefore, not all objects have the same patterns or the same colours.

This may negatively impact on the effectiveness of vehicle and object recognition and matching. As a result, together with noise reduction converting the captured image to a binary image in only black and white , geometric matching seems more suitable for use in the CVROSS to detect, recognize and match different types of vehicles and objects based on their shapes, lengths and other significant features, as well as to determine the image score values mentioned. It can prevent failure of recognition and matching of an item due to different patterns and colours.

In this case, when the image is acquired properly and noise has been reduced, the process of recognition and matching can then be carried out. Vehicle and object recognition and matching are based on templates inserted during the set-up process for the system parameters. When an object appears, or a vehicle passes by or parks inside the angle of view of the HD vision devices, the devices will capture images and compare them automatically with the templates in the database.

Thus, vehicles and objects can be assigned to a category after recognition. In the following sections, parking-gap calculations, parking-space evaluation and decision support in parking are considered and evaluated, as shown in Figure 5. The block diagram shows that the entire computation involves three components: i conversion between pixel values and actual scale for road traffic, ii fuzzy logic for vehicle parking reservation and iii decision support for parking activities.

After vehicles and objects have been recognized and matched, the CVROSS calculates parking gaps for each individual traffic lane. First, the conversion between the pixel value collected from the image and the actual scale should be implemented, via experimental studies. The conversion ratio is essential for estimating the actual number of parking spaces and is utilized in the following analysis.

As indicated in Figure 6 , in the first traffic lane, shown at the top of the image, there are three vehicles, and each of them has four corner points, i. In this study, it is supposed that the cameras are mounted on street lights and nearby facilities, so that the heights and viewing angles of the cameras may be different. Thus, adjustment of the images taken by cameras that are not mounted on street lights is needed, in order to standardize the image for conversion.


  • Software Testing Foundations (4th Edition)!
  • Calvin and Hobbes.
  • Intelligent Video Surveillance Solutions To Secure Your Business.

Figure 7 illustrates the scenario of mounting cameras at different heights with different viewing angles. In the default setting, the cameras that are mounted on the street lights are set vertically, to cover a particular FOV. For other camera settings with different heights and viewing angles, the image and the FOV are then adjusted back to the default setting. Consequently, the conversion ratio can be applied for calculating the actual length and width of vehicles.

After the four corner points of each vehicle have been retrieved, the CVROSS computes the maximum and minimum values of x and y, i. Using the above information, the size of the vehicle captured by the camera is known, and the spaces for vehicle parking reservation are then computed using fuzzy logic:. In fuzzy logic, there are three processes: fuzzification, the inference engine and defuzzification.

Equation 4 shows the inference process for obtaining the aggregated outputs.


  1. Transforming Cybersecurity: Using COBIT 5?
  2. Sonata in D major - K346/P250/L60.
  3. Author: Fredrik Nilsson?
  4. Surveillance Insights.
  5. In the application, when the region of the vehicle is recognized in the image, the parking time, reservation factor and estimated time of stay for the vehicle can be measured, to truly reflect the occupied spaces for vehicle parking. The membership functions used in fuzzy logic are predefined intuitively by interviewing domain experts and industrialists, as shown in Table 1 :.

    Remarks: 1 trimf refers to the triangular shape of the membership functions; 2 trapmf refers to the trapezoid shape of the membership functions. To calculate the parking gap between vehicles, four situations should be taken into consideration, as shown in Figure 8. To prevent errors of unlimited value, the largest pixel value for length the th pixel rather than the first pixel , is utilized to compute the first gap, namely, the end gap G 0.

    Hence, in accordance with Equation 6 , the end gap G 0 can be computed by subtracting the maximum x -value of the first vehicle V 1 from the maximum pixel value for length, i. For cases 1 and 2 in Figure 8 , the calculation of the end gap is performed via Equation 6 , and the end gap is the partial parking gap between two vehicles, such that the information from the right camera should be considered to measure the whole parking gap between the two vehicles as for case 1 or 3.

    For cases 3 and 4 in Figure 8 , since the maximum x -value of the first vehicle V 1 is equal to the maximum pixel value, this implies that the end gap is equal to zero and the length of the first vehicle captured by the camera does not represent the actual length of the vehicle. The information from the right camera should be collected and combined with the partial length of V 1 to confirm the actual length of V 1 , whilst the situation of the left camera should be similar to case 2 or 4.

    The parking gap in pixel values can be obtained and can be converted back to the actual scale using the pixel-to-actual-scale conversion ratio. All the above situations were considered in the proposed system, and parking-space assignment was then conducted for three types of vehicles: a private car, a cargo van and a truck, with regulatory parking spaces of 5 m, 7 m and 11 m respectively [ 35 ].

    Calculation of parking gaps is useful for computing the available parking spaces. Therefore, the information on available parking spaces S truck , S van and S private car for the three types of vehicles in each individual traffic lane, or even for the whole road, is produced, to inform road users about real-time roadside occupancy and vacancy. Consequently, the proposed system can provide three decision support functionalities: evaluation of average space utilization, measurement of loading and unloading activity and average waiting time for parking.

    Considering that there are p cameras in the whole traffic lane, the average space utilization U is calculated by dividing the total available parking gaps by the maximum length of the image in pixels , as shown in Equation 9 , where G ij represents the available parking gap i determined by camera j and Pixel j ,max represents the maximum pixel value of camera j. If the traffic space is occupied by trucks and cargo vans instead of private cars, these are regarded as engaging in loading and unloading activities.

    The indication of loading and unloading activities is assumed to be updated hourly in the proposed system, to conveniently track the traffic situation. For average waiting times for parking, the proposed system will determine the waiting time for the entire traffic lane when any available parking space G n is less than the required parking space for a private car representing the smallest parking space for the three types of vehicles.

    Therefore, users can make an appropriate decision according to the above three indicators:. Frequently updating real-time information allows road users to obtain useful information about real-time roadside occupancy and vacancy. Thus, road users can make good use of the information to make real-time decisions, such as parking their vehicles on the road or finding other roads. In addition, running the program with a time delay can prevent overrunning and overloading of the server, thus maintaining a high level of stability and accuracy of calculation.

    The evaluation of the proposed CVROSS system is twofold: i validation of parking-gap estimations and ii system performance from the perspectives of drivers and property management companies. The parking-gap estimation is validated using a paired sample t-test for examining the difference between two sets of 50 sample data points, i. On the other hand, the satisfaction and the system performance are evaluated by interviewing drivers and property management company representatives, using a survey.

    Figure 9 shows sample questions used to obtain feedback. As a result, a comparative summary before and after implementing CVROSS was produced, for further statistical analysis. Due to the seriousness and urgency of the problem of traffic congestion in Hong Kong, particularly in Kwun Tong District, an IoT-based system for surveillance of roadside loading and unloading bays is much needed. The entire implementation was divided into three phases: i site selection, ii deployment of the CVROSS and iii establishment of web-based user interfaces.

    The project commenced with data collection mainly from selected site visits focusing on Kwun Tong District. Having obtained a better understanding of traffic situations and occupation, a simulation model was built based on traffic features and real cases in Kwun Tong District.

    Subsequently, a solution with the CVROSS system architecture was deployed to tackle the issue with the help of a web application. Thus, implementing the CVROSS involved the application of computer vision, cloud computing, big data analysis and reusable energy solar power , to detect, recognize and match vehicles and objects, hence providing road users with comprehensive and real-time information, after image processing. The information was also visualized using a front-end web interface to enhance understandability. In this phase, data collection was mainly focused on site visits in Kwun Tong District, Hong Kong, in order to gather traffic information from real situations for further analysis.

    The data collected included traffic facilities and information on the surroundings of the selected roads, such as the number of lamp posts, traffic lights and traffic lanes, together with distances and the lengths and widths of the roads. Data on traffic situations in the area considered were collected through observation, to obtain a better understanding of the real state of occupation and traffic congestion.

    As a major industrial area, Kwun Tong District sees a large number of loading and unloading activities every day. Firstly, vehicles temporarily double-parked for loading or unloading or waiting for roadside spaces to become available, are common in the area of interest. Because a large number of trucks usually double-park on Hing Yip Street, serious traffic congestion can occur.

    Secondly, as parking spaces are scarce in Kwun Tong District, some nearby companies might occupy the roadside with objects such as traffic cones and boards, to preserve parking spaces. This situation hinders other road users from using the road. Therefore, in addition to detection, recognition and classification of various vehicles and objects, the computer vision-based roadside surveillance system needs to provide road users and logistics companies with information about occupancy and vacancy, so that they can optimize fleet schedules based on analytical information via self-regulation.

    External walls of buildings and lamp posts are the only possible positions for installing the HD vision devices for capturing images in the computer vision-based surveillance system. There is some difficulty in installing HD vision devices on the external walls of buildings, particularly on commercial buildings, without permission. It is believed that most property owners are likely to refuse to install the HD vision devices due to a lack of benefits and effects on the appearance of their buildings. Furthermore, various buildings may have different features at different heights, and this may lead to difficulties in unifying standards, such as the height of all HD vision devices, thus negatively affecting vision and possibly creating some overlaps.

    Therefore, lamp posts, managed by the Highways Department of the Hong Kong Government, are recommended as the best places to install the HD vision devices along roads and streets. In the areas considered, lamp posts have a mounting height of 10 m, set by the Highways Department [ 32 ]. The Highways Department is responsible for preventive and corrective maintenance of lamp posts. This is beneficial for the installation and operation of the vision devices and computer vision-based surveillance system, as breakdowns and errors can be resolved promptly to maintain a high level of stability in the system, compared with installations on the external walls of buildings.

    In the design of the CVROSS, the deployment of the proposed system consists of four major components: i noise reduction, ii vehicle recognition, iii calculation of parking gaps and iv calculation of available parking spaces. The proposed system was deployed using Simulink and LabVIEW for algorithm modelling and real-world prototyping respectively, as shown in Figure The models and algorithms for parking-gap calculation and parking-gap assignment and the fuzzy logic for vehicle parking reservation, were developed in the Simulink environment, while the user interface and the system prototyping and data acquisition elements, were controlled and constructed in the LabVIEW environment.

    Firstly, the set-up of the parameters for real-life implementation was required, especially the size of vehicles and traffic cones and their dimensions in pixels, according to Section 3. Then, data collection commenced via vision acquisition and noise reduction. As shown in Figure 12 , the original image from vision acquisition included the traffic-lane lines, which are unrelated to vehicle and object recognition and matching. These lines are likely to negatively influence the results of recognition and matching. It was found that, after noise reduction, only the shapes of related vehicles remained.

    This could facilitate the subsequent processing of the image. As a result, better and more accurate processing could be achieved, to enhance the effectiveness of the designed system. However, different roads with their own features and characteristics may require different techniques for noise reduction, to remove unrelated signals from an image. This may represent a time-consuming modification when the system is applied to different roads in Hong Kong.

    To determine the dimensions of specific vehicles, the technique of geometric matching was used to recognize and match two trucks with different appearances. It was found that the CVROSS was able to detect, recognize and match vehicles from all traffic lanes on the road and those in an individual traffic lane. General traffic conditions could be interpreted using the information from the matching results for all traffic lanes on the road, for example, for the issue of vehicles remaining double-parked.

    On the other hand, information from an individual traffic lane was capable of illustrating situations in a particular traffic lane, to determine the level of traffic congestion and identify loading and unloading activities. Figure 13 illustrates the use of geometric matching in vehicle recognition. The coordinates of vertices are located for measuring the corresponding length and width of the vehicles via a geometric technique. Using the matching results, the calculation of parking gaps was implemented.

    The roadside situations at most six gaps, including the end gap could be determined by one HD video camera. The total number of gaps was set to a large number M for the implementation. Thus, the fuzzy capability of parking reservation can be included in the computation of parking gaps. Figure 15 illustrates the lengths of the parking gaps in three lanes with different numbers of vehicles. When there was no vehicle in lane 1, the end gap was displayed as pixels, which indicated that all the pixels were available, while the other gaps had zero value.

    From the computations, it was found that the algorithm was able to calculate the parking gaps programmatically, based on the previous matching results. For example, if no vehicles are in the traffic lane, only the end gap is shown. As a result, information on the length of all parking gaps can be produced and used for further processing. However, the number of gaps needed to be set before running the program. Thus, further calculation was required regarding the capacity of a particular road and traffic lane.

    Then, the possible number of parking gaps that may need to be computed was set. The calculation of available parking spaces was then tested by applying the CVROSS, after obtaining the data on parking gaps. Based on the proposed algorithm, the length of each parking gap in pixels was divided by the length of each type of vehicle and the constant reserved for parking that particular vehicle. The number of vehicles available for parking in the individual traffic lane was computed by the algorithm. If the number of private cars which are the shortest vehicles in the scenario was equal to zero, this meant that a particular parking gap was wasted.

    Furthermore, the CVROSS was able to add up the lengths of all vehicles and available parking spaces, and show these as occupancy and vacancy respectively, as well as showing the wasted spaces in the individual traffic lane, to provide users with information on the general traffic conditions. Therefore, by dividing the length of parking gaps by the length of each type of vehicle, the CVROSS—using the function for calculation of available parking spaces—proved its ability to compute, and provide users with, information about the number of spaces available for parking in each area.

    China Surveillance: Smart cameras help track almost every move

    Thus, it is useful and helpful to users in making immediate decisions and for self-regulation. For example, if there are no longer any available parking spaces, drivers can decide to park their vehicles on other roads, to prevent traffic congestion occurring. Figure 16 shows the aggregation of available parking spaces in specific lanes. The data on parking gaps collected from several cameras are summarized to form the set of aggregated results of parking gaps and used to assign various types of vehicles to the empty gaps. Thus, the CVROSS is still able to compute the parking gaps and available parking spaces to show occupancy and vacancy, as well as the wasted spaces, for the situation where there is occupation by an object in the traffic lane.

    It is crucial to provide users with a good-quality interface for information visualization that is easy to understand and simple to use. The results of vehicles detected and matched, as well as the parking gaps and available parking spaces computed, can be presented graphically. An interface design for information visualization is presented in Figure An image display was utilized to present real-time traffic situations on the road within the system time. This could provide users with a general view of the areas under surveillance.

    In addition, as shown in Figure 18 , on the main dashboard of the CVROSS, various reports about road usage by different types of vehicles can be generated for road users, logistics companies and the public, for better understanding of traffic situations in the areas under surveillance in a particular period. Following the case study, it was found that it was feasible to implement the proposed system in real-life situations, to provide functionalities for real-time monitoring and decision support for roadside parking activities. On the one hand, property companies can evaluate the severity of double-parking and view the real-time roadside situation from the back office.

    During the case study, samples of parking gaps were examined for accuracy of parking gap estimation, compared with the actual measured parking gap. The accuracy comparison between estimated and actual parking gaps is shown in Figure A paired sample t-test was applied to examine the difference between estimated and actual parking gaps, and the null hypothesis was to assume that the mean difference was zero.

    It was found that statistical significance for the mean difference was achieved with a p -value of 0. The average and maximum errors for parking gap estimation were 1. Moreover, the accuracy of estimation of the time of stay was also assessed using 50 samples to compare estimated and actual times of stay, as shown in Figure A paired sample t-test was also applied to examine the difference between estimated and actual times of stay, and the null hypothesis was to assume the mean difference was zero. The average and maximum errors in the estimation of time of stay were 1.

    On the other hand, truckers and drivers can make use of the proposed system to understand the specific roadside situation. In the next section, the performance of CVROSS is assessed by conducting a comparative analysis—before and after adopting the proposed system.

    ultolgabalma.cf

    How intelligent video surveillance can help you

    Any advantages and contributions are discussed accordingly. To verify the performance of the proposed system, a comparison of before and after the use of the CVROSS was made, considering three aspects: i severity of traffic congestion, ii energy savings of vehicles and iii driver satisfaction.

    The results were obtained by interviewing 50 drivers and 10 representatives of property management companies in the selected areas. These were selected because they were frequent users of Shing Yip Street and Hing Yip Street and had considerable management responsibility. Table 2 shows the findings from the interviews with property management company representatives and individual drivers. In summary, the effects obtained by implementing the proposed system appear to be positive.

    According to property management companies, the severity of traffic congestion on specific roads and incidences of double-parking were reduced by Moreover, companies can save on the labour force costs of controlling the busy roadside situation, reducing numbers of workers from 10 per shift to six per shift. Monitoring and control of roadside situations can be conducted in the back office, and real-time traffic information can be provided to truckers and drivers via the proposed system.

    Drivers and truckers commonly agreed that average fuel consumption was reduced, and that the average time to locate suitable parking spaces could be decreased by In addition, truckers and drivers were generally satisfied with the proposed system, as it could improve the poor situation regarding double-parking and traffic congestion in busy districts.

    Notes: a UoM refers to unit of measurement; b Scale 1—10 refers to a Likert scale from 1 to 10, while 10 is the highest score in scale and 1 is the lowest score in scale. A while loop a control flow statement that allows code to be executed repeatedly can also be utilized in the servers. This allows the program to be run every second or even more frequently, also enabling data, information and reports to be saved every second or more frequently.

    Although this can provide users with regularly updated information, the server overloads easily, as large quantities of data, information and reports must be processed and saved. Thus, the stability of the system is negatively affected. For example, assuming a month has 30 days, there are 2,, s in a month for an Excel file generated programmatically utilizing a while loop.

    Professional video security technology

    This means that there are 2,, records per month, generating approximately 31,, records per year. This could be problematic for big data analysis after a number of years, as more data are generated. As a result, a timed loop is suggested instead of a while loop. In this case, the timed loop is set with a five-minute delay. Thus, it can still update the real-time traffic information frequently for road users, facilitating the operations of the CVROSS and loading the server smoothly, to prevent overloading and to maintain stability, facilitating the process of big data analysis.

    In fact, the five-minute delay can be adjusted, based on the real needs of road users, hence providing them with a more user-friendly system. The proposed system makes three major contributions to research and society: i smart parking for roadside operations, ii applied artificial intelligence for roadside parking activities and iii an environmentally-friendly business model for property management companies.

    In the field of urban development, smart cities are thought to be a future trend and emerging technologies are applied to formulate different forms of decision support and intelligence, to improve efficiency and effectiveness. In the evolution of the smart city, smart mobility is specific to objects including human beings , transportation and logistics.

    The ontology of smart parking is developed from smart transportation, which is an active research area. In this paper, smart parking for roadside operations was applied, to eliminate double-parking and enhance roadside occupancy. Via the adoption of IoT technologies, the new topic of smart parking has been explored to address the problem of double-parking at the roadside. Therefore, novel contributions relating to smart parking have been made in this paper. In the evaluation of parking gaps and available parking spaces, the proposed system makes use of fuzzy logic to classify various types of vehicles in real-life situations, i.

    Intelligent IP video management platform tailored to your specific needs

    Fuzzy logic offers flexibility and intelligence in the algorithm, to generate certain decision support functionalities. Therefore, the proposed system is able to evaluate reservation spaces and the estimated time of stay of the vehicles. This information can be used to estimate average space utilization, loading and unloading activity and average waiting times for parking. Overall, the data collected by IoT technologies and the data on roadside activities are integrated using artificial intelligence techniques, i. Considering the findings from implementing the proposed system, it can be concluded that the proposed system has advantages with respect to energy-saving, time efficiency and better roadside occupancy.

    For example, if there are always many trucks loading and unloading on Monday mornings, some logistics companies can plan to change their schedules in order to load or unload goods at other times, to prevent waiting at times of traffic congestion. Thus, the system is able to facilitate traffic and fleet management by self-regulation. The interface and related information can be further amended and transferred to a mobile application to enhance the transparency of roadside activities. Via self-regulation by road users and logistics companies taking advantage of information and communication technologies , the system relieves traffic congestion, achieves an efficient road network and facilitates the development and management of a reliable and intelligent transport system.

    This work is not only beneficial to property management companies and drivers, but also has a positive influence on Hong Kong society, fostering an environmentally friendly and safe atmosphere in roadside operations. By adopting the CVROSS, companies could save on costs and labour power for managing roadside activities, and thus business profitability could be improved.

    Roadside activities, such as loading and unloading, negatively affect traffic situations if not kept under control. Hence, smart mobility is crucial for built-up areas in Hong Kong, aligning with smart-city development. This is especially the case where no real-time information about the roadside activities, occupancy and vacancy is accessible to the general public and road users. The CVROSS is a fully integrated solution, equipped with a set of wireless HD vision devices enabling image capture from the roadside, utilizing machine learning and supported by solar power, proposed as a real-time IoT-based system for surveillance of roadside loading and unloading bays.

    This can facilitate traffic and fleet management by implementing smart mobility, thus achieving a highly efficient road network. From the set-up of parameters to vehicle and object recognition and matching with noise reduction, the calculation of parking gaps and available parking spaces and, lastly, to information visualization, the CVROSS, together with state-of-the-art IoT technologies, is able to provide road users with real-time roadside traffic information, such as roadside occupancy and vacancy, thereby enhancing the transparency of roadside activities.

    Various reports, e. For example, logistics companies can optimize fleet schedules based on analytical information. In addition, fuzzy logic is applied in evaluating parking gaps and available parking spaces at the roadside, to establish decision support in roadside operations for enhancing evaluation accuracy and system flexibility.

    Video Surveillance

    This is expected to help alleviate traffic congestion by reducing waiting times for loading and unloading activities and reducing costs of fuel and energy consumption by locating parking vacancies and preventing circling around the roads. The proposed CVROSS solution facilitates the development and management of a reliable and intelligent transport system in Hong Kong, resulting in the achievement of smart parking on the basis of smart mobility and smart transportation.

    Future efforts can be made to investigate, modify and realize the implementation of the CVROSS, to enhance the transparency of roadside activities.